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Failure of the Mill determinant method for the sextic 
anharmonic oscillator 
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t Institute of Nuclear Physics, 250 68 Ret, Czechoslovaltia 
4 Centre de Physique Thkorique, CNRS-Luminy, F-13288 Marseille Cedex 9, France 

Received 18 March 1992 

Abstract. An atended analysis of eigenvalues and wavefunctions resulting from the 
Hill determinant method Q canied out for the onedimensional sextic anharmonic 
willator. It Q shown that, m spite of a seemingly natural ansatz of lhe method, 
irrelevant wavefunctions may appear, leading lo incorrect eigenvalk,. The domain of 
applicability of the method is limited and its practical use demands D priori investigation 
before mnaete  calculalions of spectral characteristics. Effective variational calculations 
based on adequate trial functions are performed and comparison of the results of both 
approaches k presented. 

I. Introduction 

Polynomial potentials in non-relativistic quantum mechanics still attract attention 
in many areas of physics. Motivation comes from different problems, where the 
anharmonic character of the interaction plays an important role. Solution of most 
of these problems requires fmding the corresponding energy spectrum, frequently 
only a part of it and, explicitly or implicitly, the wavefunctions. The possibility of 
writing down the solution in a compact form is unlikely [l] and thus it is necessary to 
tackle this task from the numerical point of view. Generally, many approaches have 
been developed, whose character ranges from perturbational, variational or recursive 
techniques to methods tailored to particular cases. Nevertheless, a common feature is 
observed, namely that evaluating eigenvalues are considerably faster and easier than 
reaching a comparable degree of precision of wavefunctions [Z]. In consequence, this 
experience drew attention to the quality of wavefunctions or their approximants and 
to the proper assessment of their accuracy. 

The present paper is not an attempt to add another algorithm to the list of the 
existing ones. Our objective is to demonstrate that analysing the wavefunctions first 
can avoid a lot of trouble that one may meet in evaluating energies. 'Ib show this 
in its full complexity is definitely beyond the scope of one paper. Instead, we shall 
discuss the so-called Hill determinant method applied to the one-dimensional sextic 
anharmonic oscillator (see e.g. [3] and references therein). We have chosen this 
specific combination for the following reasons. First, the Hill procedure proved to be 
deceitful as already shown in [4], because, while it may converge to the correct value, 
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it need not converge at all and, worst of all, it may converge to the wrong value. 
It is worth noting that this method is currently used [SI in application to various 
potentials and having been properly adapted it gives correct results [q. Simplicity 
and wnsparency of the algorithm together with its rate of convergence might account 
for its popularity. Second, the sextic anharmonic oscillator is a favourite object of 
investigation due to the relative diversity of physical situations it can model (one, two 
or three minima). This oscillator ranks among the so-called quasi-exactly-solvable 
problems (see [l] and historical references therein) and provides us with the richest 
variety of so-called terminated solutions of all polynomial potentials, so far as it is 
hown. These solutions, having a form of a polynomial multiplied by an exponential 
function, serve as welcome reference points in our discussion and, in addition, it tum 
out that they divide the space of coupling constants into areas of simiiar behaviour. 
It is worth noting that these particular solutions also turned out to be of practical use 
in solving the quartic anharmonic oscillator [6]. 

The paper is organized in the following way. The next section reminds the reader 
of the construction of the Hill approximants and exposes the limited range of their 
applicability to energy level evaluation. Section 3 is devoted to comparison of the 
Hill approximants and the exact wavefunctions in different domains of the coupling 
constants and manifestation of their unlit structure. For the exact wavefunctions we 
employ the specially adapted variational functions that we regard as the most suitable 
trial functions for polynomial potentials because of the reliability and fast convergence 
of the procedure. We consider it useful to share our experience, which is presented 
in section 4. 

2. Hill method 

As already mentioned the sextic anharmonic oscillator 

V ( z )  = A Z 2  + A4z4 + A& A, > 0 

covers fairly diverse physical situations with one, two and three minima (a 
classification which can easily be seen from figure 1). If we scale off the leading 
coupling constant (i.e. A, = l), we are left with the two remaining ones, A,, A,. Into 
the addition, if the condition 

is fulfilled, where U = 0 , l  according to the parity, the Schr6dinger equation admits 
the lirst n solutions of a given parity of a form 

where P, is a polynomial of the nth degree. They are sometimes called terminated 
solutions. In fact, potential (1) with condition (2) corresponds to one of the quasi- 
exactly-solvable problems and has a hidden sl,(R) symmetry [l]. This explains the 
origin of the terminated solutions as a reflection of the existence of finitedimensional 
representations of sI,(E). Conditions (2) are represented as the broken curves in 
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Figure L Areas in (A2,Ad)plane (As = I ) ,  where the potential (1) has one, iwo or 
three minima. ?he h k n  parabolas indicate the terminated solutions @) (U = 0). 

figure 1 and they divide the (A2, A,) plane into a set of curved strips. For the sake 
of clarity, two salient cases, namely A, = 0 and A, = 0, will be dealt with separately. 

Thus, we start with the potential 

V(x) = z6 + A , 2 .  (4) 

It is a natural tendency to factor out as much of the wavefunction in a compact form 
as we are able to. The asymptotic behaviour of wavefunctions at I z 1- CO is given 
bY 

+(z) -+ e 4 1 4  (5) 

+(+) = f(z)e-5‘/4. (6) 

and it is therefore quite natural to parametrize wavefunctions in the form 

Now, we come to the Hill method considering, for example, eigenstates with 
positive parity, ie. Y = 0. The Hill method assumes that the wavefunctions are in 
the form (6) and looks for the factor f in the form of a power senest 

t Let us emphasize that the BLtractiOn of the exponential factor which controls the leading asymptotic 
behaviour of an eigenfunclion, looks relevant, if one looks at this procedure f” the point of view of 
perturbation theory of the ‘nonliearizalion’ method [Z]. Basically, if we wanted to find the factor f in 
this perturbation ulenry, it should lead to a convergent perturbation series. 
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E 2 
-A, - 3  E 12 

30 H i  = -A, - 7 E 

-A, - 4i - 5 E 

is straightforward to eipresi ai in the form 

, .  

(-1)i ai = - 

Let us insert this ansatz into the Schrodmger equation with the potential (4). This 
converts the Schrodinger equation into a three-term recurrence relation for ai and it 

(8) 

where H i  is a determinant of a three-diagonal matrix 

The stun ling block lies in the following idea of the method. One assumes thi 

(9) 

the 
series (8) converges in the sense, that ai i 0 as i -+ CO. 'RI check this assumption, 
one tentatively puts 

aN = 0 (10) 

and then finds those values of E for which this condition is fulfilled. This calculation 
is then repeated for successive values of N .  These roots, E(N), should represent an 
approximation to the eigenvalues and the smallest real roots for each N should 
correspond to the ground-state energy. Let us compare the lowest real roots 
E m i n  (N) 9 Emin (N+l) E(N+'). mm . . first If they do not change substantially, one hopes that 
convergent results have been reached. Then one repeats the same procedure for the 
next lowest roots (which should represent the second excited state energies) and so 
on. This is a crucial p i n t  of the method because it is not always so, namely the roots 
need not be real or need not converge, which makes the method ill defined [4,8], 
although this is not obvious at first sight 

In order to demonstrate this, we have plotted, in figure 2, the dependence of the 
first five Hill approximants on the parameter A, and compared them with the exact 
results for the groundstate energy (E"), the second excited (E,), and the fourth 
excited state (E.,). By exact results we refer to eigenenergies that can be obtained by 
several different methods producing identical results, however with different amounts 
of labour. It is a matter of personal preference in this instance that we have employed 
methods of a variational character to get these numbers in the simple case of (1). 
The procedure described later ranks among them too and seems to be optimal from 
many points of view. 

The overall view of figure 2 shows that the Hill approximants we obtain are 
symmetric with respect to the A, axis, i.e. E i -E. This is so due to the symmetry 
of Hill determinants 

H t ( h , - & , M  = (-l)iHi(&>Ad, A,) (11) 

discussed in [4,9]. 
Generally, the nth determinant provides us with n roots, which should 

approximate the first n eigenvalues of positive parity, E,, E*, ..., E,,+2 The 
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I 

Figure 2 ?he dependence OF lhe limt five Hill apprmimanu on A*. ?he limt appmdmant 
remains identically zero. W tried 10 distinguish approximants 10 the ground state, Eo 
(broken awe) ,  the semnd excited state, & (chain curve), and the fourth excited state, 
Eq (dotted), but the correspondence makes Sense only For the p u n d  state. ?he lull 
c u m  show the exact solutions. 

first deficiency that we fmd is striking: these energies are real on& in certain intervals 
of A,-all even determinants (9), (IO) have only complex mots for A, > -?-we 
thus have no real approximants to the energy in this interval (!). A, = -3 is the 
rightmost point where all even approximants have at least two real roots. Points 
A, = -11, -19,... represent a sequence of values of A,, where more roots become 
real, i.e. for A, < -11 the approximants H4, H6, H8,  ... have four real roots, for 
A, < - 19 the approximants H6, H,, . . . have six real roots etc. 

Odd determinants behave io a slightly different way. There is always at least one 
real mot, which remains identically zero due to symmetry (11). This mot clearly has 
no physical significance in spite of the fact that it coincides with the exact solutions in 
points A, = -3, -11, -19,. . . . Similarly to the behaviour of the even approximations, 
new real roots start to appear at certain points. This time they do not form at one 
common point but at points forming a sequence that moves to the right with increasing 
n. "hble 1 illustrates this situation by listing the points where new pairs of real mots 
appear. 

Another remarkable feature is the coincidence of the exact and certain Hill 
solutions at points A, = -3,-7,-l l , . . .  . Indeed, aU approximants intersect at 
these points with the exact energies and the wavefunctions also coinciding. This is 
not so surprising since this coincidence b present from the very beginning, cf (10) 
and (3). 

Now, convergence is determined by this setting. We refer the reader to 141, 
which shows graphic representations of selected typical examples. Here we confine 
ourselves to commenting on convergence from a general point of view. The previously 
mentioned sequence A, = -3, -7,-Il,.. . separates areas of similar behaviour. 
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lhbk 1. The values o( A,, where new pairs of mls of odd Hill appmximants appcar. 

n 1st mic 2nd mir 3rd mu 4th mu etc. 

3 -6.4286 
5 -6.2924 -14.6081 
7 -6224.5 -14.4826 -22.6894 
9 -6.1824 -14.4125 -225166 -30.1374 
11 -6.1530 -14.3560 -22.5094 -30.6353 - 
19 -6.0883 -14.2683 -22.3802 -30,4566 - 
51 -6.0115 - 

101 -s.gm - - - - 
- - - -  

First, let us examine the interval (-3,-7). %king for example A, = -6 and 
considering the ground state, we find the even approximants converge to the exact 
energy from below, while the odd determinants have no real roots up to n < 65 (!). 
Then they start to appear and approach the limit from above. As to the energy of the 
second excited state E,, we encounter an example of a convergence to an unphysical 
value. Owing to the previously discussed symmetry (ll), the values obtained for both 
even and odd approximants are the same as those for the gound state but with 
opposite sign. This implies that they converge in the way we have just depicted to 
-E,,, Figure 2, however, demonstrates that all mots (both even and odd) clearly 
lie below the exact value. On the other hand, if we do not go far from A, = -7 
to the right, the difference between the exact eigenenergy and -E, is small and 
our physical intuition does not give a reliable guarantee, which we f h d  particularly 
vexing. We go through this result once more in section 3, examining the corresponding 
wavefunctions. 

If we go to the interval (-11,-7), the picture changes slightly. All approximants 
to the ground-state energy have real roots converging to the correct value; the even 
ones from above, the odd ones from below. Keeping the symmetry (11) in mind, it 
is clear that we have roots placed symmetrically with respect to the A, axis. These 
mots converge at each point of the interval (-11, -7), however, to -E,. This curve 
‘interpolates’ between exact values of E, and E4 in the endpoints of this interval, 
but bears no relevance either to E, or to E4. Notwithstanding this we always end up 
with convergent results that could be mistaken for the right answer, at least in close 
vicinity to the endpoints. 

Instead of continuing this discussion (no basically new phenomenon is met-the 
main features repeat and become more involved and sophisticated) we look at another 
particular case of the original potential (1): 

V(z) = z6+ A4z4. (12) 

In figure 3 we plotted the energies of the first three levels and corresponding Hill 
approximants against A,. This potential displays another type of symmetry (cf (11)) 
which we are going to inspect: figure 3 is symmetric with respect to simultaneous 
change of sign of both axes, A, + -A, and E -+ -E. Let us note that the 
coincidence of the Hill ap roximants and the exact solutions are also present, now for 
A, = f 2 6 ,  & 2 f i ,  f 2  P 11,. . ., where this potential becomes quasi-exactly-solvable. 

It is the point A, = 0 which seems to be the most suitable starting point of our 
discussion. It is evident that the Hill approach fails completely in this case. Only odd 
determinants have a real root, which remains identically zero, while all eigenvalues 
are positive (!). 
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- 6  - 4  -2 0 2 4 6 8 10 

F@m 3. The dependence of the f i s t  6ve Hill approximants an Xq. The c u m  have 
the same meaning as in figure 2 

In the direction of positive values the quality of approximation improves 
considerably. In the interval ( 0 , 2 f i )  we obtain real mots for all odd determinants 
lying below the exact value. The even ones behave in an analogous manner as the 
odd approximants in figure 2, namely they have real roots beginning at some points, 
and these pints form a sequence moving to the left As already stated, the Hill 
method does not reproduce the physical result in the beginning, but succeeds for 
A, = 2&. This implies that the algorithm is inefficient near the beginning and 
gets better for higher A,. Be this as it may, if we reach a limit, it is the correct 
result. The second excited state is approximated correctly by even determinants from 
below. The closer to the point 2d7, the sooner (with increasing n) odd approximants 
produce relevant values which converge to the correct answer from above. The picture 
develops according to the same pattern, only higher levels start to be involved. 

The situation for negative A, is quite different As a consequence of the symmetry, 
we get convergence to the same results as for positive A, but with the opposite sign. 
Thus, we have again found a case of convergence to an unphysical value; e.g., for A, 
from the interval (-24,O) all physical energies lie above the Hill value. If we look 
further to the left the situation does not become any better. The symmetry of the 
Hill determinants does not reflect the descent of the physical levels, except for the 
terminated solutions. 

The dependence of energy levels on the coupling constants we have just described 
is not encouraging. Therefore it is important to reveal the reason and to understand 
where thii trouble occurs and why. 

3. Analysis of wavefunctions 

From the discussion of energy convergence it is not clear why we get such a peculiar 
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dependence on coupling constants when the original ansatz (7), (S), (10) Seems to be 
so 'natural' and acceptable. This is, however, lot so if we look at the corresponding 
wavefunctions. The condition aN = 0 proves lot to be 'natural' and imposes a severe 
restriction on the coefficients (8) of the pre-exponential factor (7). The wavefunctions 
resulting from the Hill procedure sometimes do lot fit lot only because of the wrong 
position of lodes, but also because their lumber is at variance with the oscillation 
(Sturm) theorem. An instance demonstrating it is listed in table 2 

M Tater and A V Turbiner 

Table 2 Number of lodes of the Hill wavefunnions (A, = 0); n is the order of the 
Hill approximant and mots E; are iumtered in azending order, ie .  lhey ieed lot te in 
accordance with the oxillation theorem. Energies and wavefunctions are complex in the 
mtelvals of A4 lot listed in lhis table. . 

Intelvals of x4 
n = 2  

Ea 
Ez 

n = 3  

Eo 

Ez 

E.! 

(-03, - 2 6 )  
0 
" 
1 

(-CO, -5.383) 
2 

(-m, -6.907) 
0 

( - 2 6 ,  -2) 
0 
0 

(26,5.110) 

(-5.383, - 2 6 )  
2 

0 
(-6.907, -6.163) 

4 

( 2 , 2 6 1  
2 
2 

(5.110, +m) 

( 2 6 , 5 3 8 3 )  
0 

4 
(-6.163, - 2 6 )  

2 

(26, +m) 
0 
2 

(5.383, +03) 

( 2 6 ,  +m) 
2 

4 

It is also instructive to compare the coefficients of f in (8) obtained from the 
Hill procedure with those of the exact solutions. There is a disputable point: how to 
iind the exact wavefunctions in this form. We propose a variational procedure whose 
details are left to section 4. A prescription for choosing adequate trial functions is 
given in [2] (for details cf [lo]). Loosely speaking it leads to a variational procedure 
which is of ion-linear Ritz character, optimizing the previously mentioned coefficients 
in the pre-exponential factor f and/or in the exponential factor in (3), preserving the 
correct asymptotics at large distances. Comparison of these coefficients with the Hill 
ones reveals how far from the physical situation these solutions are, cf table 3. 

Table 3. The deviation of lhe Hill f" exact wavefunctions for V(z)'= z6 - 3z4 
expressed via the coemaents of the pre-exponential factor (7). 

at a2 - a3 a4 a5 EO 
Exact 0.20430 0.19674 0.00100 O.Kt063 0.00220 -0.6605 
Hill 0.08987 0,01891 0.00678 0.00080 O.WO75 -1.6723 

We should add a remark here. The wavefunction has been investigated since 
an early stage of the discussion. It has been explicitly demonstrated that the pre- 
exponential factor (7) with the coefficients (8) may lead to compensation for the 
exponential behaviour for 1x1 --c 00, if E has a ion-physical value and, furthermore, 
thus lead to deterioration of the square integrability of the wavefunction [SI. Another 
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interesting discussion of this point has been made by Hautot [3]. However, a detailed 
investigation of structure of wavefunction approximants has not yet been done as far 
as we know. 

4. briational calculations 

Let us discuss this variational procedure. The quality of variational calculations 
depends heavily on trial functions. We start with the wavefunction with the correct 
asymptotical behaviour (A, = 1) in the form 

$(I) = s(=) exp(-s4/4- A4X2/4) (13) 

The function g(=) has no singularities at finite, real I (only zeros in the case of 
excited states) and grows no faster than a power of I at large I. Therefore let us 
represent g by the partial sum of the Bylor expansion (even parity) 

N 

n=l 

Now we will treat the coefficients an as variational parameters. In order to avoid 
unnecessary complexity we shall investigate the potential (4) first. At this point it is 
fitting to keep in mind the form of the terminated solutions (condition (2)). As already 
mentioned these solutions occur only for A, = -3,-7,-11,...; this sequence plays 
the role of reference points (see section 2). We listed the eigenfunctions explicitly 
for the first five points in table 4. Evidently, our procedure must reproduce them. 

Let us now discuss the ground state. The first point we choose is A, = -3, which 
reduces to E, = 0 and a mere exponential 

It requires no variational parameter; direct evaluation confirms it. If we allow for one 
variational parameter, al ,  we get the results presented in table 5. It really reproduces 
the exact solutions in A, = -3 and -7, gives two-digit agreement in energy with the 
exact solutions in the interval (-7, -3). It gradually deteriorates at points distant 
from the endpoints in both directions. Reaching A, Y -12.85756, the whole picture 
collapses, because the value of al goes to infinity. It could also be demonstrated by 
explicit evaluation of the optimal a l .  Although the variational results for energy are 
fairly good, at least in certain areas, the trial wavefunctions for A, > -3 are less 
adequate, because they have one node. We shall indicate later how to put it right. 

Considering the second variational parameter a, enlarges the range of 
applicability on both sides (see table 5). The solution in A, = -11 is reproduced 
exactly and the precision of energy is increased up to three digits in the interval 
(-11,-3). However, the new wavefunctions are not devoid of the undesirable 
feature of having one node for A, > -3. Inclusion of more coefficients a, in the 
pre-exponential factor of the trial function (14) proceeds in this line; we get excellent 
agreement of variational and exact energies, fairly good wavefunctions in the interval 
specified roughly by points A, = -3 and A, = -4n + 1, if n variational parameters 
are taken into account and physically wrong behaviour outside this interval, which 
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W k  4 The Brsl &e sets of the terminated solutions of even parity of the quasisxaaly- 
solvable problem @.e. R = 1,. .. , 5  and Y = 0) for V ( z )  = z6 + &zz. 

2 -7 

3 -11 

4 -E 

5 -19 Eo = -- 
E2 = -a 
EA = 0 

Tsble 5. Values of energies do?, E$> E g ?  d32, AQ ampared with the parameter 
A2 kom lhe variational pmcedure with the bial function (13)-(14) having none, one, 
two, three and four variational parameters, p = 0. E, is the exact energy (see text). 

A2 do? 
3 28679 
2 23899 
1 1.9120 
0 1.4340 

-I a95m 
-2 0.4780 
-3 aoom 
-4 -a4780 
-5 -0.9560 
-6 -1.4340 
-7 -1.9120 
-8 -23899 

d? 
20947 
1.8071 
1.5047 
1.1822 
0.832 19 
0.443 53 
o.Llo0 00 

-0.521 22 
-1.1490 
-1.9125 
-28284 
-3.8914 

d2? 
1.961 45 
1.713 89 
1.445 27 
1.149 55 
0.818 41 
0.440 41 
0.w M~ 

-0.523 13 
-1.153 30 
-1.91535 
-282843 
-3.90048 

&? 
1.939 34 
1.699 54 
1.436 88 
1.14538 
0.816 84 
0.440 10 
0.w 00 

-0.523 26 
-1.15352 
-1.91546 
-282843 
-3.900 63 

d4? 
1.93602 
1.69752 
1.43578 
1.14487 
0.81667 
0.44007 
0.00000 

-0.52326 
-1.15353 
- 1.915 46 
-282843 
-3.90063 

E, 
1.935 48 
1.697 21 
1.435 62 
1.14480 
0.816 65 
0.440 06 
0.00000 

-0.523 26 
-1.15354 
-1.91546 
-2.828 41 
-3.900 64 

is especially annoying for positive A,. Summarizing this part, we can say that the 
method work principally well, but we would appreciate even higher efficiency and 
last but not least a wider range of ,applicability. 
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In order to achieve this we should somehow simulate the inclusion of more 
variational parameten in a reasonable way. 'Ib this end let us modify the exponential 
factor in (13) by a quadratic term with an additional variational parameter p: 

= 9(+) eXp(-x4/4- P.z/2). (16) 

Clearly, such a term should influence all coefficients of g(2) leaving the leading 
asymptotical behaviour unchanged. As the results show this simple trick does improve 
the quality of the trial function considerably. For instance, even putting g(s) = 1 
and minimiking with respect to the parameter p increases the relative accuracy in 
energy by one order, giving, for example, two correct digits for such a distant point as 
A, = 10. Adding another free parameter, namely al, we find an interesting picture, 
d table 6. We reach three-digit agreement in energy in the interval (-15, -3) and 
high accuracy (two digits) for A, > -3. Evidently, the exact solutions and our 
variational results coincide for A, = -3 and A, = -7 (at p = 0). Fbr A, = -15 the 
trial wavefunction is incapable of describing the true answer. However, if A, -3, 
al = 0 exactly; ie. all the change is modelled by the quadratic term in the exponential 
in (16). It can be confirmed by analysing the solution of the corresponding equations 

The point A, = -3 is important, because (17) has only one solution in the region 
A, > -3 while two solutions for A, > -3, one of them being the absolute minimum. 

Table 6. Values of the ground-state energies E& E&, Eh%r, E& "pared 
with the parameter A2 from the variational procedure with the trial [unction (13) and 
(14) having WO, three, four, five and sh variational parameters. E, is the exact energy 
(see text). 

3 1.946212 1.935517 
2 1.707632 1.697241 
1 1.445160 1.435654 
0 1.152624 1.144825 

-1 0 . 8 2 i m  a816662 
-2 0 . 4 4 1 ~ 0  auoon 
-3 O.OMMO awom 
-4 -0.m20o -amm 
-5 -1.153410 -1.153410 
-6 -1.915384 -1.915384 
-7 -2.828427 -2828427 

1.935 517 
1.697241 
1.435 654 
1.144825 
0.816662 
0.440073 
0.woMM 

-0.523 268 
-1.153538 
-1.915464 
-2828427 

1.935 482 
1.697 208 
1.435 625 
1.144803 
0.816 649 
0.440 058 
0.ow MO 

-0.523 268 
- 1.153~538 
-1.915 464 
-2.828 427 

1.935 482 
1.697 208 
1.435 625 
1.144803 
a 8 1 6 a 9  
0.440 06s 
aooo MO 

-0.523 269 
-1.153 538 
-1.915464 
- 2828 427 

1.935483 
1.697208 
1.435 625 
1.144802 
0.816649 
0.440 068 
o.woooo 

-0.523 269 
-1.153538 
-1.915464 
-2828427 

-8 -3.900373 -3.900632 -3.900632 -3.9W635 -3.900635 -3.900635 

Such a feature is also present if a, is included. We can reproduce the solution 
in A, = -11 with this trial function (together with A, = -3 and A, = -7) and 
the optimal a2 is exactly zero in (-7,-3). Relatively high accuracy (four digits) is 
achieved in a fairly wide area of A, and the corresponding wavefunctions have no 
nodes as expected (indicating thus that we proceed in the proper way). Thking a3 
into consideration shifts the interval in which a3 = 0 to (-11, -7) and so on. The 
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vanishing ais manifest themselves in table 6 in repeated values of energy (Le. including 
another variational parameter improves neither energy nor the wavefunction). 

The corresponding variational calculations of the energies of the second excited 
states are shown in table 7. Products of the exponential function (16) and pre- 
exponential factors (14) have been used as trial fuctions. First, the calculation of the 
ground state has been performed and the resultant trial function was exploited as 
an approximate expression for the ground-state eigenfuction. llial functions of the 
second excited state have also been chosen in the form (14), (16), orthogonal to the 
approximate ground-state functions already obtained. Bbles 6 and 7 demonstrate the 
high quality of our choice of the trial functions yielding fairly accurate results. 

%able 7. Values of energies E$%,, EYA,, Er; ,  of the sgand acited state 
compared with the parameter Xz from the vari$tional procedure with the trial function 
(13)-(14) having WO. three, four and 6ve variational paramelen. E, is the mac1 energy 
(see tal). 

Xz 
3 
2 
1 
0 

-1 
-2 
-3 
-4 
-5 
-6 
-7 
-8 

2,- 

11.735082 
10.887 343 
10.013 347 
9.114685 
8.194807 
7.259 881 
6.319788 
5.388 823 
4.485 127 
3.627373 
2828 427 
2089236 

E(3) 
z,= 

11.735082 
10.887 343 
10.013 347 
9.114685 
8.194807 
7259 881 
6319788 
5388 823 
4.4485 127 
3.621 373 
2a28 427 
2086 570 

( 4 )  
E2,Var 

11.681 219 
10.836 685 
9.966 820 
9.073 251 
8.159398 
7231 300 
6298 562 
5375038 
4.478 El 
3.625 342 
2828 427 
2086 570 

10.836 685 

9.073 251 
8.159 398 
7.231 300 
6.298 562 
5.375038 
4.478 051 
3.625342 

9.966820 

2828 427 
2086528 

E, 
11.680971 
10.836460 
9.966 622 
9.073 085 
8.159 265 
7.231 201 
6.298 349 
5374 970 
4.478 031 
3.625331 
2828427 
2086528 

Let us turn OUT attention to the following fact. Independent of the value of the 
parameter A,, the coefficients ai in the pre-exponential factor (14) decrease quickly 
with growing i. In the case of the second excited state, this reflects the bifurcatory 
nature of the node position equation g(r) = 0 (see (14)). Apart from this it signals 
the non-algebraic nature of this equation for the values of A, different from those 
corresponding to the quasi-exactly-solvable cases (see (2)). A similar phenomenon 
has already been observed for the multidimensional anharmonic asymmetric oscillator 
[U] and the Zeeman effect at hydrogen [lo]. 

'hble 8 illustrates the same from another point of view, namely it shows how fast 
(or slowly) al reaches the correct value in different intervals of A,. The terminated 
solutions mark intervals in which we must allow for as many variational parameters 
as non-vanishing coefficients in the pre-exponential factor of the corresponding 
terminated wavefunctions. Higher US behave in the same way, only the number 
of variational parameters taken into account must be increased accordingly. 

It is important to note here the following. If we know the exact eigenenergy (it 
is not important for the moment where or how we got it) and plug it in the Hill 
expressions for the coefficients a$., we get reasonable (generically, non-vanishing) 
values of these coefficients. It destroys the original, stumbling assumption (10) of 
the Hill method. In other words, the Hill method is not suitable for finding the 
eigenvalues, but provides a good representation of the eigenfunctions, if the energy 
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lbbk 8. The convergence of the coefficient ai for the gmund slate With haeasing the 
number of variational parameters ai, i = 1,2,3,4,5. The quadratic term in z in the 
aponential famr of the trial function is included [see (16), p # 0 is admitted); the 
correct form of the pre-exponential factor [See [6), (7)) h recOnstructed by apanding 
the exponential e-8.I into the 'Bylor series and rearranging Ule powen of z. "he 
aact values of terminated solutions of the quasiexactly-solvable problem are marked by 
asterisks 

XZ - 
3 
2 
1 
0 

-1 
-2 
-3 
-4 
-5 
-6 
-7 
-8 

1 par. 
1.589 24 
1.356 57 
1.109 06 
a846 a 
0.57093 
0.286 27 
0.". 
0.60486 
0.845 44 
1.09489 
1.41421. 
1.851 32 

2 par. 
1.61578 
1.450 68 
1.283 85 
1.11429 
0.940 07 
0.745 22 
o.wow* 
0.60486 
0.845 44 
1.09489 
1.414 21. 
2.15252 

3 par. 

1.61536 
1.45061 
1.283 60 
1.1 14 27 
0.940 07 
0.745 22 
0.WOW' 
1,05046 
1.276 55 
1.48470 
1.41421' 
215253 

4 par. 
1.81481 
1.685 36 
1.556 41 
1.42749 
1.29491 
1.139 68 
0.WOM)' 
1.050 47 
1376 55 
1.484 70 
1.414 21 * 
2.447 79 

5 Ear. 

1.81481 
1.68536 
1.556 41 
1.42749 
1,29491 
1.139 68 
0.ow w* 
1.13227 
1.n2 10 
1.49451 
1.41421' 
2447 79 

is already known. Comparing them with our variational wavefunctions we found that 
p is an indicator of the difference between variational and Hill coefficients a;. If 
is small, these two methods do not differ drastically. For A, positive, however, we 
have large p, if the number of variational parameters is limited to five'or six, and the 
corresponding coefficients differ substantially from the Hill ones. This demonstrates 
that we need many more Hill terms in order to achieve convergent results. The 
variational procedure produces more effective representation of the kvefunction in 
this case. 

What happens if a non-zero A, is admitted?-as a matter of fact, not much. In 
doing so we have, in fact, picked out a point in the (A2, A,) plane (see figure 1) 
belonging to one of those curved strips. And what was said in the case of A, = 0 
remains valid. 

5. Conclusions 

The Hill method was investigated from different standpoints. It has also been 
improved into more reliable forms that could be applicable in evaluating eigenenergies 
of various potentials. 'Ib our knowledge, nobody has analysed the corresponding 
wavefunctions in the same way as we have, which is the most reliable and most 
complex indication. We found that the Hill procedure is incorrect from this point of 
view. This might be surprising, because this method takes into account the proper 
asymptotic behaviour. Nevertheless the choice of coefficients in (8) means that their 
values are far from the true answer in many areas of coupling constants, as the 
comparison with our variational results shows. 

One of the main aims of the paper was to find out the reason why wrong results 
emerge in such a simple and well estabiihed method. First, we showed that two 
types of problems can occur: the complexity of the eigenvalues and/or the breaking 
down the normal properties of eigenfunctions such as the number of nodes etc. We 
have explained that these problems are the consequences of the approximation of the 
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infinitedimensional matrix by a sequence of finite-dimensional ones (see equation 
(8)). According to this, the exact coefficients in the pre-factor of a wavefunction (6) 
can have no concern at all to those calculated through the Hill method. Our results 
show that the convergence of Hill method calculations can be very slow and, even 
worse, can converge to the wrong values (see table 8 and figure 2). We localized the 
main reason for this phenomenon explicitly, demonstrating that in intermediate steps, 
the Jacobi matrices may not satisfy the condition of existence of real eigenvalues (see 
e.g. [12]). l X s  means that the original Hill method possesses a non-obvious, intrinsic 
drawback the method does not contain a property which ensures the e&ence of on& 
real tigenvalues at each intermediate step. However; innking some modifications to the 
original Hill method and somehow removing this drawback we are m t  guaranteed that 
there are M more hidden drawbacks, connected in such a way of approximation of the 
infinz2e-dimensionaI matrix by finite-dimensional mes. 

The struggle for some reliable reference data led us to a very effective and 
conceptually easy wriational procedure, which is interesting in itself. The efficiency 
of these trial functions is not so surprising. If one treats them as inputs to the 
perturbation theory of the ‘non-linearization’ method [2, lo], they lead to a rapidly 
convergent iterative procedure. Such an analysis has been camed out in detail for 
the quarkonium potential 121. 

Owing to the fact that our trial functions have the same form as the Hill functions 
we find a wry rapid convergence in energy (the true asymptotic tail) and a controllable 
convergence rate for the wavefunctions. The procedure is l i e d  to the terminated 
solutions in a natural way and thus provides us with the possibility of estimating the 
number of n e w m y  variational parameters (determined by neighbouring terminated 
solutions). These features make our method a recommendable and well performing 
algorithm applicable to other polynomial potentials. 

Acknowledgment 

The authors are grateful for the kind hospitality shown by the Centre de, Physique 
ThBorique, Marseille, France where this work was completed. 

References 

M Tnter and A V Turbiner 

nubiner A V 1988 Sm. Phys.-ZhETF 94 3345  
lbrbiner A V 1988 C o n ”  Math Phys. 118 457-74 
nubiner A V 1987 Sm. Pkys.-Yad FR 46 204-18 
Haul01 A 1986 Php Rev. D 33 437-43 
mier M 1987 d Phys A: Math Gen 20 2483-95 
Znojil M 1991 Rigorous Resulls m Qw” Mechanics ed J Diltrich and P Exner (Singapore: World 

Scientific) pp 113-22 and references Iherein 
Chaudhuri R N and Mondal M 1989 Pkys. RW. A 40 608&3 1591 Phys. Reu A 43 32416 
Burrows B I, Cohen M and Feldman T 1989 d Pkp A: Mark Gm 27. 1303-13 
Chhajlany S C and Malnw V N 1990 1 Phys. A: Mmh Gen 23 3711-18 
FernAndez F M 1991 Phys Reu A 44 3336-9 
Znojil M 1982 F’hys. Reu D 26 3750-1 
Killinzbeck J P 1986 Phvs. Lea 115A 253-55 
Znojii M 1986 Phys. Le i  116A 207-9 
lhrbiner A V 1989 &for of Sciences hcsir ITEP, M o m  fin Russian) 
nrbiner A V 1988 Sou S ~ - R e v . ;  Pkys. 10 79-131 
Gantmakher F R and Rein M G 1953 Oscihtoy Mattices and Kernels and Small Oscilfationr of 

Meckmrical5pm plowow: Gostekhudal) (in Russian) 


